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Abstract. Heterogeneous information networks have attracted much
attention in recent years and a key challenge is to compute the similarity
between two objects. In this paper, we study the problem of similar-
ity search in heterogeneous information networks, and extend the meta
path-based similarity measure PathSim by incorporating richer informa-
tion, such as transitive similarity and temporal dynamics. Experiments
on a large DBLP network show that our improved similarity measure
is more effective at identifying similar authors in terms of their future
collaborations.
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1 Introduction

Heterogeneous information networks are ubiquitous in many real-world appli-
cations, such as bibliographic networks and healthcare networks. Different from
homogeneous information networks (which only consider one type of object and
link), heterogeneous information networks involve multiple types of objects and
links. For example, heterogeneous bibliographic networks contain authors as well
as other types of objects, such as papers, venues, and terms. In addition, hetero-
geneous information networks contain rich semantic information. For example,
two objects can be connected through different links with different semantic
meanings (i.e. two authors can be connected by co-authoring a paper or pub-
lishing different papers on a same venue). Such networks can more accurately
model complex network data.

Heterogeneous information networks have been studied in many data mining
tasks [6, 16, 15]. In this paper, we focus on the problem of similarity search in
these networks. Similarity search aims to discover the most relevant objects
with respect to a given query object. In heterogeneous information networks
where multiple types of objects are available, we focus on identifying similar
objects of the same type considering rich semantic information. For example, in
a heterogeneous bibliographic network, given a query author, we can discover
similar authors based on the diversified semantic meanings, such as co-author
relationships and venues of publication.



Intuitively, two objects are similar if there many paths between them. A ma-
jor challenge for similarity search in heterogeneous information networks is how
to exploit the diversified semantic meanings under different paths. Existing simi-
larity measures for homogeneous information networks cannot effectively capture
such meanings since they treat all the paths between two objects equally with-
out distinguishing the different semantic meanings. Some existing studies have
recognised this problem and tackled similarity search in heterogeneous infor-

mation networks based on the concept of meta paths[19, 14]. A meta path is a
sequence of links between object types, which can capture a particular semantic
meaning between its starting type and ending type. The meta path-based sim-
ilarity measures treat the concrete paths following a given meta path equally.
However, the impacts of the paths connected through different objects can vary.
The challenge is how to model such impacts. In addition, heterogeneous infor-
mation networks evolve over time, and contain rich temporal information. For
example, the link between two objects is generally formed with a timestamp.
The challenge is how to exploit this temporal information for similarity search.

In this paper, we extend the meta path-based similarity measure PathSim[14]
by incorporating transitive similarity and temporal information. A meta path
can be concatenated by multiple short meta paths. Given a meta path, we first
decompose it into multiple short meta paths with the start type and end type
of the same type. For example, meta path “author-paper-author-paper-author
” (APAPA) describing two authors share same co-authors can be decomposed
into two meta paths APA and APA. Then we add weights to the paths following
a short meta path, according to the similarity between the two end objects of
the short meta path, which is called transitive similarity. The transitive simi-
larity between two objects can be obtained based on the different meta paths
between them with different semantic meanings. The higher the transitive sim-
ilarity between two objects, the more important the paths between them. For
example, suppose two end authors x and y of APAPA are connected through
two common co-authors z1 and z2, if z1 is more similar to x and y compared
with z2, the paths between x and z1, and the ones between y and z1 should be
more important.

In addition, the paths between two objects are generally associated with
temporal information, i.e., the building time. Intuitively, the recent paths should
be more important than old ones. The paths are generally built as a result of an
event. For example, the path “Tom−P1 − SIGKDD” with building time 2012
following the meta path “author-paper-venuer” is built due to the event that
Tom published paper P1 in SIGKDD in 2012. To differentiate the importance
of different paths, we first decompose a meta path into multiple short meta
paths with the maximum length that an event can affect, for example, meta
path “author-paper-venue-paper-author ” can be decomposed into “author-paper-
venuer” and “venue-paper-author”. Then we add weights to the paths following
the short meta paths according to their building time.

On the other hand, evaluating a new similarity measure is difficult, since
it is difficult to obtain ground truth. We approach this challenge by assuming



that similar objects will exhibit their similarity by their future behaviour. For
example, in the Flickr image network, similar images are more likely to share the
same tags or be in the same categories in the future. In bibliographic networks,
similar authors are more likely to have collaborations in the future. Under this
assumption, we can obtain a ground truth to evaluate our extended similarity
measure and compare it against existing methods.

The contributions of this paper are summarized as follows:

– We develop a new method that incorporates transitive similarity to capture
the impacts of different paths between two objects given a meta path.

– We incorporate temporal information for similarity search in heterogeneous
information networks, by assigning different weights for the paths with dif-
ferent building time.

– Experiments on DBLP network data demonstrate the effectiveness of our
proposed methods.

The rest of the paper is organized as follows. Section 2 presents related work,
then preliminary concepts and a problem definition are given in Section 3. Section
4 introudces our proposed methods, and Section 5 presents the experimental
results. Finally, Section 6 concludes the paper.

2 Related Work

The key basis for similarity search is a similarity measure, which measures the
similarity between two objects. Similarity measures for traditional data types
have been widely studied, for example the Jaccard coefficient and cosine similar-
ity. For graph data, a number of studies utilize link information to measure the
similarity between two objects. Early similarity measures include co-citation[11]
and co-coupling[7], which were developed for scientific papers. Other similarity
measures based on random walks have also been developed, such as SimRank[4]
and Personalized PageRank [5]. SimRank measures the similarity between two
objects recursively, by averaging the similarity of their neighbours. Personalized
PageRank measures the similarity between two objects by the probability of a
random walk with restart starting from source object to target object.

The similarity measures defined in homogeneous networks ignore the different
types of semantic information that is available under different paths in hetero-
geneous networks. There are several works on similarity search in heterogeneous
information networks. In [14], a meta path framework was proposed for hetero-
geneous information networks, where a meta path corresponds to a sequence of
links between the objects. Based on the framework, a similarity measure called
PathSim was proposed, which aims to find similar objects with the same type.
In [19], the similarity query ambiguity problem was studied, arising from the di-
versified semantic meanings in heterogeneous information networks. For a query
object, users can provide example similar objects for the query as guidance for
choosing related objects. Recently, relevance search in heterogeneous networks



was studied in [10]. A relevance measure called HeteSim, was proposed to mea-
sure the relatedness of the objects in heterogeneous networks, either of the same
or different type. Overall, these works are based on the meta path framework
and can capture semantic information under a meta path. However, they do not
differentiate the impacts of concrete paths given a meta path, which can affect
the similarity between two objects.

Another line of work related to our problem is link prediction, as the similar-
ity between two objects can be used to predict the existence of a link between
them (i.e., friendships and co-authorship). In addition, since we evaluate the
similarity measures considering the future behaviour between two similar ob-
jects, and such behaviour can be that a link will be formed between them in the
future, our problem is similar to link prediction. However, we focus on develop-
ing similarity measures and the future information is only used for evaluation,
while link prediction aims at developing methods to predict the existence of a
link between two objects. The methods for link prediction can be directly using
similarity measures[8] or more sophisticated such as using supervised learning[2].

There are several works on link prediction in heterogeneous information net-
works[12, 18, 13]. The most related work to our problem is co-author relationship
prediction in heterogeneous networks. Sun et al.[12], considering heterogeneous
meta path-based features, used a logistic regression-based co-author relation-
ship prediction model, to predict future co-author relationships. Our similarity
measure can actually serve as a heterogeneous feature for their link prediction
model.

3 Preliminaries and Problem Statement

In this section, we briefly introduce concepts related to heterogeneous informa-
tion networks and define the problem.

A Heterogeneous information network is defined as a graph G = (V,E,

T ,R) where V is a set of objects, E is a set of links, T is a set of object types and
R is a set of link types between object types. Since a heterogeneous information
network contains multiple types of objects and links, |T | > 1 and |R| > 1. Each
object v ∈ V is associated with a particular type Ti ∈ T , and each link e ∈ E is
associated with a particular type Rj ∈ R.

The concept of network schema [14] has been proposed to describe the
meta structure of a heterogeneous network for better understanding. It is a
graph defined as SG = (T ,R) where each object is an object type and each link
is a link type between object types.

For example, Fig. 1(a) shows the network schema for a bibliographic informa-
tion network. There are four types of objects: papers (P), venues(conferences/
journals) (C), authors (A) and terms (T) which are the words appearing in the
paper title. Also there are different links between the objects. For example, the
links between authors and papers denote the writing or written-by relations.

A meta path P is a path defined over network schema, and is formalized as

T1
R1−−→ T2

R2−−→ · · ·
Rl−→ Tl+1, which defines a composite relation between type T1



and Tl+1. The length of P is the number of relations in it. The objects can be
connected through different meta paths. Two examples of meta path are shown
in Fig. 1(b) and Fig. 1(c). For simplicity, the meta path is denoted by the names
of object types.

Paper

Term Venue

Author

(a) Network schema

Venue

Paper

Author

Paper

Author

(b) Meta path: APCPA

Paper

Author Author

(c) Meta path: APA

Fig. 1. (a) A bibliographic network schema; (b) meta path “author-paper-venue-paper-
author” (APCPA) describing authors publish papers in the same conferences; (c) meta
path “author-paper-author” (APA) describing co-author relationship.

PathSim [14] is a meta path-based similarity measure, which aims at finding
similar peer objects for a query object, such as finding similar authors in terms
of research area and reputation. Given a symmetric meta path P , PathSim

computes the similarity between two objects x and y according to

s(x, y) =
2× |Px y|

|Px x|+ |Py y|
(1)

where Px y is the set of paths between x and y following P , Px x is that
between x and x, and Py y is that between y and y. The intuition behind
PathSim is that two similar peer objects should not only be strongly connected,
but also share comparable visibility. Their connectivity is defined as the number
of paths between them following P , and the visibility is defined as the number
of paths between themselves[14].

Given a symmetric meta path P = T1T2 · · ·Tl, PathSim similarity be-
tween two objects xi ∈ T1 and xj ∈ Tl with the same type s(xi, xj), can
be computed through the commuting matrix M , which is defined as M =
WT1T2

WT2T3
· · ·WTl−1Tl

, where WTiTj
is the adjacency matrix between type Ti

and type Tj.Mij denotes the number of paths between object xi ∈ T1 and objects
yj ∈ Tl following meta path P , and Mij = |Pxi xj

|. Similarly, Mii = |Pxi xi
|

and Mjj = |Pxj xj
|.

Problem Statement: The problem studied in this paper is as follows. Given
a heterogeneous information network and a query object, the goal is to find the
top-k objects with the same type and the highest similarity with respect to the
query object.



4 Proposed Methods

In this section, we introduce our methods to extend PathSim by incorporating
transitive similarity and temporal information.

4.1 Transitive Similarity

Given a meta path P = T1T2 · · ·Tl, where T1 and Tl are the same type (T1 = Tl),
Tm is the set of intermediate types which are the same as T1 and Tl, Tm =
(Tm1, Tm2, · · · , Tmd) where d is the cardinality of Tm. Therefore, P can be con-
catenated by multiple meta paths Pi(i = 1, · · · , d+1), which is shown in Eq.(2).

P = T1 · · ·
︸ ︷︷ ︸

P1

Tm1 · · ·Tm2
︸ ︷︷ ︸

P2

· · ·Tmd · · ·Tl
︸ ︷︷ ︸

Pd+1

(2)

PathSim [14] treats all the paths between object x ∈ T1 and y ∈ Tl connected
through different transitive objects z ∈ Tmh equally. However, intuitively, we are
more likely to trust the paths betweens the objects which are more similar to
each other. We can put different weights on the paths following Pi considering
the transitive similarity between the start type and the end type of Pi. A simple
way of obtaining the transitive similarity is to utilize PathSim over different
meta paths with different semantic meanings. Therefore, for meta path P , its
commuting matrix can be computed as

MP = M s
P1
M s

P2
· · ·M s

Pd+1
(3)

where M s
Pi

is the commuting matrix for meta path Pi with transitive similarity
incorporated, and can be computed as

M s
Pi

= MPi
· SP′ (4)

where MPi
denotes the commuting matrix of Pi, with each element representing

the number of paths between object x ∈ Ts(Pi) and object y ∈ Te(Pi), where
Ts(Pi) and Te(Pi) represents the start type and the end type of Pi respectively.
SP′ denotes a transitive similarity matrix computed on meta path P ′. P ′ can be
different meta paths such that Ts(P

′) = Te(P
′) = Ts(P) = Te(P). SP′ allows us

to incorporate different meta paths with different semantic meanings.
To better illustrate our method, we give an example in bibliographic net-

works. Fig. 2 shows the paths between Rao Kotagiri(Rao) and Jian Pei(Jian)
following meta path APAPA, and the one between Rao and Kim Marriott

(Kim) according to DBLP between 1990 and 2007. Rao and Jian (Kim) are
not co-authors between 1990 and 2007. But they are connected through their
common co-authors. Suppose Rao is the query author, the PathSim similarity
between Rao and Jian according to Eq.(1) is,

s(Rao, Jian) =
2× |APAPARao Jian|

|APAPARao Rao|+ |APAPAJian Jian|

=
2× (9× 2 + 1× 2 + 18× 11)

21280 + 15333
= 0.0119



(a) The paths between Rao Kotagiri and Jian Pei following APAPA

(b) The paths between Rao Kotagiri and Kim Marriott following APAPA

Fig. 2. Example of paths following APAPA with Rao Kotagiri as the query author
and two candidate authors

where the process of computation of |APAPARao Rao| = 21280 is not shown
due to the space limitation, and the same for Jian (15333). Similarly, s(Rao,Kim)
= 0.0134. However, according to our improved similarity measure,

s′(Rao, Jian) =
2×

∑

c∈Co(|APARao c| × SRao,c + |APAc Jian| × Sc,Jian)

19357.04+ 12594.43

=
2× 3.59

19357.04+ 12594.43
= 2.25E − 04

where c denotes a common co-author ofRao and Jian,Co = {JinY an Li, Limsoon

Wong,Guozhu Dong} denotes the set of common co-authors of Rao and Jian,
SRao,c denotes the transitive similarity between Rao and c (in this example, S



is computed based on APA), and similarly for Sc,Jian. The number of paths
(weighted) between Rao and Rao (19357.04) is given directly due to the space
limitation, and the same for Jian (12594.43). Similarly, s′(Rao,Kim) = 1.43E−
04. We assume that more similar authors are more likely to collaborate with the
query author in future. In this example, based on the DBLP data between 2008
and 2013, Jian has collaboration with Rao, while Kim does not. We can see
that our improved similarity measure can rank Jian higher compared with Kim.

4.2 Temporal Dynamics

Heterogenous information networks evolve over time, and also the similarity be-
tween two objects can change over time. We are more interested in finding similar
objects now or even in the future. Intuitively, two objects are more similar if there
are more recent connections between them. Instead of treating the paths given
a single snapshot equally, we differentiate the impacts of paths formed at differ-
ent timestamps. A simple way is to put different weights on the paths formed
in different timestamps. Essentially, the older paths make less contribution to
similarity than recent ones, and should be given lower weights.

Given a meta path P = T1T2 · · ·Tl, its commuting matrix can be computed
as

MP = M t
P1
M t

P2
· · ·M t

Pg
(5)

where M t
Pi

is the commuting matrix for meta path Pi with temporal information
incorporated, and such that

∑g

i=1 l(Pi) = l(P), where l(Pi) is the length of meta
path Pi. Pi is a meta path on which an event happens in a particular timestamp.
For example, it can be APC in bibliographic networks which represents author
publish paper in conference in a particular year. M t

Pi
can be computed as

M t
Pi

= MPi
· YPi

(6)

where YPi
is the temporal matrix on Pi, with each element represents the weight

of the path between object x ∈ Ts(Pi) and object y ∈ Te(Pi). The weight can
be assigned according to the timestamp of the path formed. Here, we define a
function f(t) of timestamp t to decide the weights,

f(t) = α(t1−t)(t0 ≤ t ≤ t1) (7)

where t0 and t1 represent the start time and end time of the data used for
computing similarities. α(0 < α < 1) can be varied. The path formed most
recently in t1 has the largest weight 1. The smaller α is, the more rapidly the
weight of the less recent path drops. Different f(t) can be defined. In this paper,
we focus on the importance of incorporating temporal information instead of
studying the impacts of different f(t).

Based on the above proposed methods, we can improve PathSim by incorpo-
rating transitive similarity and/or temporal dynamic, and find the top-k similar
objects for a give query object based on our improved similarity measure.



5 Experiments

In this section, we compare the effectiveness of our improved similarity measure
using the PathSim measure as a baseline.

5.1 Evaluation Measure

Assessing similarity is challenging since it is difficult to obtain ground truth
providing a quantitative measure for the similarity between two objects. Most
existing methods to evaluate the performance of similarity measures rely on user
studies or on an reliable external measure of similarity. The study in [14] used
case studies and manually labeled the results for a handful of queries, evalu-
ating using domain knowledge based on these queries. In this paper, since we
assume that similar objects will show similar behaviour in some way in the fu-
ture, we can obtain ground truth to evaluate the similarity measure and provide
a comprehensive experimental assessment using thousands of test queries.

We use NDCG (Discounted Normalised Cumulative Gain), a widely used
measure in information retrieval [1][3], to evaluate the ranking performance. It
rewards relevant objects in the top ranked results more heavily than those ranked
lower. In particular, we use NDCG@n, which computes NDCG over the top n

ranked objects, and which can be computed as

NDCG@n =
DCG@n

IDCG@n

DCG@n = rel(1) +

n∑

i=2

rel(xi)

log2(i)

(8)

where IDCG@n denotes the Ideal DCG for a perfect ranking and rel(xi) denotes
the relevance score for an object xi at position i.

5.2 Experiment Setup

The DBLP dataset downloaded on 25th April 2013 is used in our experiments.
The network schema of DBLP network is same as Fig. 1(a). The data from 1990
to 2007 (denoted as T1990−2007) is used to compute similarity, while the data
from 2008 to 2013(denoted as T2008−2013) is used for evaluation. The number
of authors, papers, conferences (including journals) and terms (after removing
stopwords in paper titles) between 1990 and 2007 are shown in Table. 1.

Table 1. DBLP data between 1990 and 2007

Data Author Paper Conference Term

1990-2007 698,507 1,114,726 4,949 139,613



We focus on computing the similarity between two authors given a meta
path between them. In particular, we use meta path APAPA which implies two
authors share the same co-authors. Given a query author q, the top n similar
authors are returned with similarity computed based on the data in T1990−2007.
We assume that similar authors will exhibit their similarity by their future be-
haviour. For meta path APAPA, two similar authors might collaborate in the
future (T2008−2013). To easily capture such behaviour for evaluation, we only re-
turn the top n similar authors who have not collaborated with the query author
in T1990−2007. To evaluate the ranking performance, we need the relevance score
rel(xi) for each returned similar author w.r.t. q. According to the number of
co-authored publications between xi and q in T2008−2013, rel(xi) can be set as

rel(xi) =

{
0 if N(q, xi)=0
ϕ (N(q, xi)) if N(q, xi) 6= 0

(9)

where N(q, xi) denotes the number of papers that q and xi publish together
in T2008−2013. We use C to denote the set of all the candidate authors. The
candidate authors are ranked in ascending order according toN(q, x)(x ∈ C), and
each candidate is assigned a ranking value according to its ranking position. For
those who have same value of N(q, x), the same ranking value will be assigned.
ϕ(·) is a mapping function from N(q, xi) to the ranking value for xi.

The query authors can be chosen from the set of authors who exist in
T1990−2007, and have new collaborations with authors exist in T1990−2007 in fu-
ture time interval T2008−2013. We randomly select 3000 authors as query authors,
and compute the averaged results over the 3000 authors. We compare our im-
proved similarity measure with PathSim using paired t-test with p = 0.05. This
process is repeated 10 times, and the results reported in this paper are the aver-
aged results over 10 runs. In addition, we show the effectiveness of our similarity
measure on two sets of query authors, highly productive authors with more than
15 publications in T1990−2007 (denoted as HP ), and less productive authors with
between 5 and 15 publications in T1990−2007 (denoted as LP ).

5.3 Experimental Results

Transitive Similarity Incorporated. In this group of experiments, we in-
corporate different kinds of transitive similarity into meta path APAPA. We
compare our methods with the baseline method, PathSim applied on APAPA.
The results are shown in Fig.3, where (APA)2 represents the baseline method,
and (APA)2 − SAPA, (APA)2 − SAPCPA and (APA)2 − SAPTPA represents
our methods on APAPA with incorporated transitive similarity based on APA,
APCPA and APTPA respectively. All the results have statistical significance
with p-value<0.05.

It can be seen from Fig.3 that after incorporating different similarity infor-
mation, the performances of our methods are improved over all the varying n on
both HP and LP queries. Basically, the similarity incorporated based on APA

gives better performance compared with APCPA and APTPA. In addition, the
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Fig. 3. NDCG@n of (APA)2 denoting the baseline method (PathSim) on APAPA

and our methods (APA)2−SAPA, (APA)2−SAPCPA and (APA)2−SAPTPA denoting
APAPA with incorporated transitive similarity based on APA, APCPA and APTPA

respectively, for (a)HP queries and (b)LP queries.

performances of all the similarity measures in terms of NDCG@N are low. The
main reason is that ranking is generally difficult, especially in the case of similar
authors in terms of future collaborators, and only using the raw similarity pro-
duced by the similarity measures. Actually, two authors can collaborate due to
many external factors that cannot be captured using the similarity measures in
this paper. Another reason is that for each run, among the 3000 queries, there
are a number of queries with 0 for NDCG@n , which degrade the average results.
Such queries do not have future collaborations with their 2-hop authors.

In addition, the overall performance of both the baseline method and our
methods on LP queries is worse than that on HP queries. The reason is that
for each run, among the 3000 queries, only about 1500 queries have new col-
laborations with their 2-hop authors for LP queries, while about 2200 for HP

queries. Meanwhile, it indicates that HP authors are more likely to collaborate
with their 2-hop authors compared with LP authors.

Since the absolute improvements can be misleading, we mainly report the
relative improvements of NDCG@n (which is also used in studies in information
retrieval[9, 17]) in the following experiments. The relative improvements of our
methods over PathSim on meta path APAPA are given in Fig. 4. We can see
that the relative improvements of our method with transitive similarity SAPA

and SAPCPA, are more than 4% and 3% respectively over all the values of varying
n on HP queries. Furthermore, the relative improvements for SAPTPA on HP

queries is less than that on LP queries. The reason might be that HP authors
are generally active in diverse research topics, which yields diverse terms.

Temporal Information Incorporated. In this group of experiments, we show
the effectiveness of incorporating temporal information. We incorporate tempo-
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Fig. 4. Relative improvements of our methods (APA)2 − SAPA, (APA)2 − SAPCPA

and (APA)2 − SAPTPA over PathSim on APAPA

ral information into meta path APAPA, and use Eq.(7) to decide the weights
of the paths following APA. Here, t0 = 1990, t1 = 2007.

First we study the impact of parameter α. Fig.5 shows the relative improve-
ments of our method (APA)2 Tα with varying α over PathSim on APAPA,
where (APA)2 Tα denotes incorporating the temporal information (with vary-
ing α) into APAPA. It can be seen that when α = 0.8, our method can yield
good performance on bothHP and LP queries. In addition, the relative improve-
ments on HP queries are much higher than LP queries. The reason might be
that the links associated with LP authors are relatively sparse, and are formed in
a relatively short time interval, which do not contain much diversified temporal
information to be exploited.
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Fig. 5. Relative improvements of our method (APA)2 Tα denoting the temporal in-
formation (with varying α) incorporated to APAPA over PathSim on APAPA.



Furthermore, we compare the relative improvements over PathSim when in-
corporating temporal information and/or transitive similarity into APAPA. Fig.
6 shows the results when incorporating only transitive similarity ((APA)2 SAPA),
only temporal information ((APA)2 T0.8), and both of them (APAPA T0.8 −
SAPA T0.8) to APAPA.
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Fig. 6. Relative improvements of our method (APA)2 SAPA, (APA)2 T0.8 and
APAPA T0.8 − SAPA T0.8 over PathSim on HP queries and LP queries.

It can be seen that there is little difference for the relative improvements of
incorporating transitive similarity on HP queries and LP queries. But incorpo-
rating temporal information makes huge differences, and basically it works better
for HP queries. In addition, the more information incorporated, the higher the
performance is, which can be seen from Fig.6 that, APAPA T0.8 − SAPA T0.8

achieves the best performance with relative improvements more than 15% on
HP queries and more than 7% on LP queries.

Impacts on Different Length of Meta Path In this group of experiments,
we check the impacts of transitive similarity on different length of meta path.
Fig. 7 shows the relative improvements of incorporating transitive similarity
(based on APA) into different length of meta path APA over PathSim applied
on corresponding length of meta path APA, where (APA)4 − SAPA represents
the relative improvements of incorporating transitive similarity (based on APA)
into (APA)4 over PathSim on (APA)4, and similarly for (APA)3 − SAPA and
(APA)2 − SAPA.

It can be seen that the relative improvement on longer paths is much higher
than shorter paths. This is because PathSim does not distinguish the impor-
tance of different paths given a meta path. When increasing the length of a meta
path, PathSim will treat more remote (and possibly irrelevant) neighbours as
similar, whilst our methods which take into account transitive similarity can
alleviate this effect.
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Fig. 7. Relative improvement on NDCG@n for different length of APA with transitive
similarity based on APA incorporated

6 Conclusion and Future work

We have studied the problem of similarity search in heterogeneous information
networks and we have proposed an improved meta path-based similarity measure
which incorporates transitive similarity and temporal information. Experimen-
tal results show that our improved similarity measures outperforms the baseline
existing method. We also found that using temporal information can provide
greater gains on highly productive authors than less productive authors. Fur-
thermore, using transitive similarity and temporal information simultaneously
can produce the best performance. In future, we plan to consider in more detail
other types of objects and networks.
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